6j –symbols, hyperbolic structures and the volume

نویسندگان

  • FRANCESCO COSTANTINO
  • Francesco Costantino
چکیده

We compute the asymptotical growth rate of a large family of Uq.sl2/ 6j –symbols and we interpret our results in geometric terms by relating them to volumes of hyperbolic truncated tetrahedra. We address a question which is strictly related with S Gukov’s generalized volume conjecture and deals with the case of hyperbolic links in connected sums of S S . We answer this question for the infinite family of fundamental shadow links.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

6j-SYMBOLS, HYPERBOLIC STRUCTURES AND THE VOLUME CONJECTURE

Abstract. We compute the asymptotical growth rate of a large family of Uq(sl2) 6j-symbols and we interpret our results in geometric terms by relating them to the volumes of suitable hyperbolic objects. We propose an extension of S. Gukov’s generalized volume conjecture to cover the case of hyperbolic links in S or #k . We prove this conjecture for the infinite family of universal hyperbo...

متن کامل

Asymptotics and 6j-symbols

Recent interest in the Kashaev-Murakami-Murakami hyperbolic volume conjecture has made it seem important to be able to understand the asymptotic behaviour of certain special functions arising from representation theory — for example, of the quantum 6j -symbols for SU(2). In 1998 I worked out the asymptotic behaviour of the classical 6j -symbols, proving a formula involving the geometry of a Euc...

متن کامل

6j SYMBOLS FOR Uq(sl2) AND NON-EUCLIDEAN TETRAHEDRA

We relate the semiclassical asymptotics of the 6j symbols for the quantized enveloping algebra Uq(sl2) at q a root of unity (resp. q real positive) to the geometry of spherical (resp. hyperbolic) tetrahedra.

متن کامل

Generalized volume and geometric structure of 3-manifolds

For several hyperbolic knots, a relation between certain quantum invariants and the volume of their complements are discovered by R. Kashaev in [2]. In [6], it is shown that Kashaev’s invariants are specializations of the colored Jones polynomials. Kashaev used the saddle point method to obtain certain limit of invariants, and Y. Yokota proved that the equations to determine the saddle points c...

متن کامل

On the volume of a hyperbolic and spherical tetrahedron1

A new formula for the volume of a hyperbolic and spherical tetrahedron is obtained from the quantum 6j-symbol. This formula is of symmetric form with respect to the symmetry of the tetrahedron.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008